Removal of Polyvinylpyrrolidone from Wastewater Using Different Methods

Polyvinylpyrrolidone (PVP) is a frequently used polymer in the pharmaceutical and foodstuff industries. Because it is not subject to metabolic changes and is virtually nondegradable, trace concentrations of PVP are often found in community wastewaters. The literature finds that the partial removal o...

Full description

Saved in:
Bibliographic Details
Published inWater environment research Vol. 84; no. 12; pp. 2123 - 2132
Main Authors Julinová, Markéta, Kupec, Jan, Houser, Josef, Slavík, Roman, Marušincová, Hana, Červeňáková, Lenka, Klívar, Stanislav
Format Journal Article
LanguageEnglish
Published Alexandria, VA Water Environment Federation 01.12.2012
Blackwell Publishing Ltd
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Polyvinylpyrrolidone (PVP) is a frequently used polymer in the pharmaceutical and foodstuff industries. Because it is not subject to metabolic changes and is virtually nondegradable, trace concentrations of PVP are often found in community wastewaters. The literature finds that the partial removal of PVP in wastewater treatment plants probably occurs through sorption. The primary objective of this study was to find an effective method to remove PVP from wastewaters. In this regard, the literature indicates the theoretical potential to use specific enzymes (e.g., γ-lactamases, amidases) to gradually degrade PVP molecules. Polyvinylpyrrolidone biodegradability tests were conducted using suitable heterogeneous cultures (activated sludge) collected from a conventional wastewater treatment plant, treatment plants connected to a pharmaceutical factory, and using select enzymes. Aerobic biodegradation of PVP in a conventional wastewater environment was ineffective, even after adaptation of activated sludge using the nearly identical monomer 1-methyl-2-pyrrolidone. Another potential method for PVP removal involves pretreating the polymer prior to biological degradation. Based on the results (approximately 10 to 15% biodegradation), pretreatment was partially effective, realistically, it could only be applied with difficulty at wastewater treatment plants. Sorption of PVP to an active carbon sorbent (Chezacarb S), which corresponded to the Langmuir isotherm, and sorption to activated sludge, which corresponded to the Freundlich isotherm, were also evaluated. From these sorption tests, it can be concluded that the considerable adsorption of PVP to activated sludge occurred primarily at low PVP concentrations. Based on the test results, the authors recommend the following methods for PVP removal from wastewater: (1) sorption; (2) application of specific microorganisms; and (3) alkaline hydrolysis, which is the least suitable of the three for use in wastewater treatment plants.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:1061-4303
1554-7531
DOI:10.2175/106143012X13373575830999