Adsorption–desorption characteristics of coal-bearing shale gas under three-dimensional stress state studied by low field nuclear magnetic resonance spectrum experiments

The micro-scale gas adsorption–desorption characteristics determine the macro-scale gas transport and production behavior. To reveal the three-dimensional stress state-induced gas adsorption–desorption characteristics in coal-bearing shale reservoirs from a micro-scale perspective, the coal-bearing...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 14; no. 1; pp. 5566 - 13
Main Authors Tian, Hunan, Tang, Jupeng, Zhang, Shipeng, Zhang, Xin
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 06.03.2024
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The micro-scale gas adsorption–desorption characteristics determine the macro-scale gas transport and production behavior. To reveal the three-dimensional stress state-induced gas adsorption–desorption characteristics in coal-bearing shale reservoirs from a micro-scale perspective, the coal-bearing shale samples from the Dongbaowei Coal Mine in the Shuangyashan Basin were chosen as the research subject. Isothermal adsorption–desorption experiments under three-dimensional stress state were conducted using the low field nuclear magnetic resonance (L-NMR) T 2 spectrum method to simulate the in-situ coal-bearing shale gas adsorption–desorption process. The average effective stress was used as the equivalent stress indicator for coal-bearing shale, and the integral of nuclear magnetic resonance T 2 spectrum amplitude was employed as the gas characterization indicator for coal-bearing shale. A quantitative analysis was performed to examine the relationship between gas adsorption in coal-bearing shale and the average effective stress. And a quantitative analysis was performed to examine the relationship between the macroscopic and microscopic gas quantities of coal-bearing shale. Experimental findings: (1) The adsorption–desorption process of coal-bearing shale gas follows the L-F function model and the D-A-d function model respectively with respect to the amount of gas and the average effective stress. (2) There is a logarithmic relationship between the macroscopic and microscopic gas quantities of coal-bearing shale during the adsorption–desorption process. This quantitatively characterizes the differences in the curves, which may be related to the elastic–plastic deformation, damage and fracture of the micropores in coal-bearing shale, as well as the hysteresis of gas desorption and the stress field of the gas occurrence state.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-024-54532-9