Stress evolution in AlN and GaN grown on Si(111): experiments and theoretical modeling

We introduce a temperature dependent anisotropic model for the stresses in gallium nitride (GaN) and aluminum nitride (AlN) films grown on Si(111) substrates and their epiwafer bow effects caused by thermal mismatch between the film and substrate. The model is verified by Raman scattering experiment...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials science. Materials in electronics Vol. 27; no. 2; pp. 2004 - 2013
Main Authors Dai, Yiquan, Li, Shuiming, Gao, Hongwei, Wang, Weihui, Sun, Qian, Peng, Qing, Gui, Chengqun, Qian, Zhengfang, Liu, Sheng
Format Journal Article
LanguageEnglish
Published New York Springer US 01.02.2016
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We introduce a temperature dependent anisotropic model for the stresses in gallium nitride (GaN) and aluminum nitride (AlN) films grown on Si(111) substrates and their epiwafer bow effects caused by thermal mismatch between the film and substrate. The model is verified by Raman scattering experiments with carefully prepared samples. The stresses analyzed from Raman frequency shifts in experiments show excellent agreement with the stresses from finite element modeling simulations. The interaction force mechanisms and the impact factors are compared. The analysis provides an insight in understanding the defect behaviors in film growth. Our model could be useful in the evaluation of the residual stresses and deformations in film growth control, post thermal process in device manufacture, packaging, and reliability estimation.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0957-4522
1573-482X
DOI:10.1007/s10854-015-3984-1