A New Hyper-Heuristic Multi-Objective Optimisation Approach Based on MOEA/D Framework

A multi-objective evolutionary algorithm based on decomposition (MOEA/D) serves as a robust framework for addressing multi-objective optimization problems (MOPs). However, it is widely recognized that the applicability of a fixed offspring-generating strategy in MOEA/D can be limited, despite its fo...

Full description

Saved in:
Bibliographic Details
Published inBiomimetics (Basel, Switzerland) Vol. 8; no. 7; p. 521
Main Authors Han, Jiayi, Watanabe, Shinya
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.11.2023
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A multi-objective evolutionary algorithm based on decomposition (MOEA/D) serves as a robust framework for addressing multi-objective optimization problems (MOPs). However, it is widely recognized that the applicability of a fixed offspring-generating strategy in MOEA/D can be limited, despite its foundation in the MOEA/D methodology. Consequently, hybrid algorithms have gained popularity in recent years. This study proposes a novel hyper-heuristic approach that integrates the estimation of distribution (ED) and crossover (CX) strategies into the MOEA/D framework based on the view of successful replacement rate (SSR) and attempts to explain the potential reasons for the advantages of hybrid algorithms. The proposed approach dynamically switches from the differential evolution (DE) operator to the covariance matrix adaptation evolution strategy (CMA-ES) operator. Simultaneously, certain subproblems in the neighbourhood denoted as B(i) employ the Improved Differential Evolution (IDE) operator to generate new individuals for balancing the high evaluation costs associated with CMA-ES. Numerical experiments unequivocally demonstrate that the suggested approach offers distinct advantages when applied to a three-objective test suite. These experiments also validate a significant enhancement in the efficiency (SRR) of the DE operator within this context. The perspectives and experimental findings, with a focus on the Success Rate Ratio (SRR), have the potential to provide valuable insights and inspire further research in related domains.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2313-7673
2313-7673
DOI:10.3390/biomimetics8070521