Microwave-assisted synthesis of copper tungstate nanopowder for supercapacitor applications

Microwave assisted synthesis of copper tungstate (CuWO4) nanopowder has been developed. Synthesized CuWO4 nanopowder was systematically characterized by X-ray diffraction spectroscopy (XRD) and high resolution scanning electron microscopy (HR-SEM). The XRD pattern revealed the formation of orthorhom...

Full description

Saved in:
Bibliographic Details
Published inCeramics international Vol. 40; no. 8; pp. 12397 - 12402
Main Authors Dhilip Kumar, R., Karuppuchamy, S.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 2014
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Microwave assisted synthesis of copper tungstate (CuWO4) nanopowder has been developed. Synthesized CuWO4 nanopowder was systematically characterized by X-ray diffraction spectroscopy (XRD) and high resolution scanning electron microscopy (HR-SEM). The XRD pattern revealed the formation of orthorhombic and anorthic phase for the as-prepared and calcined powders, respectively. The average particle sizes of ca. 19.3 and 44.0nm were estimated using the Scherrer equation for Cu-WO3 and microwave irradiated powder samples, respectively. The HR-SEM observation showed the morphological homogeneity with an aggregate of very small spherical and rod shaped particles. Nanocomposite films onto glassy carbon electrode have been fabricated using CuWO4 nanopowder. The electrochemical behavior of the nanocomposite film electrodes has been investigated using electrochemical impedance spectroscopy and cyclic voltammetry techniques. The maximum specific capacitance of 77Fg−1 was achieved for the CuWO4 nanopowder.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0272-8842
1873-3956
DOI:10.1016/j.ceramint.2014.04.090