Multi-Arm Global Cooperative Coal Gangue Sorting Method Based on Improved Hungarian Algorithm

The existing multi-manipulator sorting method for gangue that utilizes a multi-task allocation strategy is not satisfactory. The single manipulator working space is fixed, lowering the cooperation degree between the manipulators and leading to a low sorting rate. Therefore, this paper proposes a mul...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 22; no. 20; p. 7987
Main Authors Ma, Hongwei, Wei, Xiaorong, Wang, Peng, Zhang, Ye, Cao, Xiangang, Zhou, Wenjian
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 19.10.2022
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The existing multi-manipulator sorting method for gangue that utilizes a multi-task allocation strategy is not satisfactory. The single manipulator working space is fixed, lowering the cooperation degree between the manipulators and leading to a low sorting rate. Therefore, this paper proposes a multi-manipulator cooperative sorting method that can work globally. First, a benefit function based on the sorting time and quality of the gangue is constructed by combining the gangue flow information and the manipulator state. The time parameter is obtained via the manipulator’s dynamic target tracking trajectory planning algorithm based on PID control. Secondly, the benefits matrix is standardized and updated many times to improve the Hungarian algorithm to achieve task allocation, and the initial solution with priority is obtained. Finally, the solutions are analyzed and processed cooperatively in order of priority. The conflicts between multiple robotic arms are eliminated through task cooperation and trajectory cooperation until the sorting task that the robot arm can execute is obtained from the allocation results. Experiments involving different sorting methods were completed on a multi-arm coal and gangue sorting experimental robot platform. The experimental results show that the sorting efficiency of the proposed method is about 10% and 20% higher than that of the fixed space dynamic and designated space fixed points methods, respectively, under different belt speeds. This method can guarantee system benefits, effectively implements cooperative control of multi-manipulator operations in the whole area, and improves the efficiency of coal gangue sorting.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1424-8220
1424-8220
DOI:10.3390/s22207987