Mechanically induced correlated errors on superconducting qubits with relaxation times exceeding 0.4 ms

Superconducting qubits are among the most advanced candidates for achieving fault-tolerant quantum computing. Despite recent significant advancements in the qubit lifetimes, the origin of the loss mechanism for state-of-the-art qubits is still subject to investigation. Furthermore, the successful im...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 15; no. 1; pp. 3950 - 12
Main Authors Kono, Shingo, Pan, Jiahe, Chegnizadeh, Mahdi, Wang, Xuxin, Youssefi, Amir, Scigliuzzo, Marco, Kippenberg, Tobias J.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 10.05.2024
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Superconducting qubits are among the most advanced candidates for achieving fault-tolerant quantum computing. Despite recent significant advancements in the qubit lifetimes, the origin of the loss mechanism for state-of-the-art qubits is still subject to investigation. Furthermore, the successful implementation of quantum error correction requires negligible correlated errors between qubits. Here, we realize long-lived superconducting transmon qubits that exhibit fluctuating lifetimes, averaging 0.2 ms and exceeding 0.4 ms – corresponding to quality factors above 5 million and 10 million, respectively. We then investigate their dominant error mechanism. By introducing novel time-resolved error measurements that are synchronized with the operation of the pulse tube cooler in a dilution refrigerator, we find that mechanical vibrations from the pulse tube induce nonequilibrium dynamics in highly coherent qubits, leading to their correlated bit-flip errors. Our findings not only deepen our understanding of the qubit error mechanisms but also provide valuable insights into potential error-mitigation strategies for achieving fault tolerance by decoupling superconducting qubits from their mechanical environments. Significant efforts have been dedicated to understanding the mechanisms of decoherence in superconducting qubits. Here, using time-resolved error measurements, the authors link errors present in transmon qubits based on Nb electrodes to mechanical vibrations of a commonly used pulse tube cooler.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-024-48230-3