Glucocorticoids inhibit cytokine-mediated eosinophil survival

Glucocorticoids characteristically induce eosinopenia in vivo and are effective for treating allergic and other eosinophilic disorders. We studied the effect of glucocorticoids on cytokine-induced survival of human eosinophils in vitro. Eosinophils were purified from normal or mildly atopic voluntee...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of immunology (1950) Vol. 147; no. 10; pp. 3490 - 3495
Main Authors Wallen, N, Kita, H, Weiler, D, Gleich, GJ
Format Journal Article
LanguageEnglish
Published Bethesda, MD Am Assoc Immnol 15.11.1991
American Association of Immunologists
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Glucocorticoids characteristically induce eosinopenia in vivo and are effective for treating allergic and other eosinophilic disorders. We studied the effect of glucocorticoids on cytokine-induced survival of human eosinophils in vitro. Eosinophils were purified from normal or mildly atopic volunteers by Percoll density gradient and incubated for 4 days in the presence of cytokine plus steroid. Cell viabilities were determined by staining cells with fluorescein diacetate and propidium iodide. In the absence of glucocorticoids, human rIL-5 enhanced eosinophil survival in a dose-dependent manner, from 22 fM for a minimal effect to 2200 fM for maximal effect. When eosinophils were cultured with a submaximal concentration of rIL-5 (220 fM), dexamethasone, methylprednisolone, and hydrocortisone inhibited eosinophil survival in a dose-dependent manner. Inhibition was time-dependent and required at least 2 days' exposure of eosinophils to dexamethasone. Dexamethasone, methylprednisolone, and hydrocortisone at 1000 nM inhibited survival by 88 +/- 2, 66 +/- 9 and 37 +/- 7%. In contrast, estradiol and testosterone (1000 nM) had no effect on eosinophil survival. When eosinophils were incubated with varying concentrations of human rIL-5 and 1000 nM dexamethasone, survival inhibition was reduced at higher concentrations of human rIL-5, and completely abolished by human rIL-5 23,000 fM. Human recombinant granulocyte-macrophage CSF, human rIL-3, and human rIFN-gamma also enhanced eosinophil survival in a dose-dependent manner and dexamethasone (1000 nM) strongly inhibited cell survival when submaximal concentrations of these cytokines were used. The effects of dexamethasone were reversed by higher concentrations of granulocyte-macrophage CSF (10 U/ml) and IL-3 (3 ng/ml). However, even 1000 U/ml IFN-gamma did not overcome dexamethasone inhibition, indicating a difference between the mechanism of eosinophil survival induced by IFN-gamma and other cytokines. These results suggest that glucocorticoids exert a direct, inhibitory effect on eosinophil survival, which may be important in the treatment of allergic and other eosinophilic disorders. Antagonism of this effect by higher amounts of cytokine may be a mechanism for glucocorticoid resistance.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0022-1767
1550-6606
DOI:10.4049/jimmunol.147.10.3490