Changes in beat-to-beat blood pressure and pulse rate variability following stroke

Associations between cerebrovascular disease and impaired autonomic function and cerebrovascular reactivity have led to increased interest in variability of heart rate (HRV) and blood pressure (BPV) following stroke. In this study, beat-to-beat pulse rate variability (PRV) and BPV were measured in c...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 13; no. 1; pp. 19245 - 9
Main Authors Abiri, Arash, Chou, En-Fan, Shen, Weining, Fisher, Mark J., Khine, Michelle
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 07.11.2023
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Associations between cerebrovascular disease and impaired autonomic function and cerebrovascular reactivity have led to increased interest in variability of heart rate (HRV) and blood pressure (BPV) following stroke. In this study, beat-to-beat pulse rate variability (PRV) and BPV were measured in clinically stable stroke patients (6 ischemic, 2 hemorrhagic) at least one year after their last cerebrovascular event. Beat-to-beat blood pressure (BP) measurements were collected from subjects while resting in the sitting position for one hour. Compared with healthy controls, stroke patients exhibited significantly greater time-domain (standard deviation, coefficient of variation, average real variability) and normalized high-frequency BPV (all p  < 0.05). Stroke patients also exhibited lower LF:HF ratios than control subjects ( p  = 0.003). No significant differences were observed in PRV between the two groups, suggesting that BPV may be a more sensitive biomarker of cerebrovascular function in long-term post-stroke patients. Given a paucity of existing literature investigating beat-to-beat BPV in clinically stable post-stroke patients long (> 1 year) after their cerebrovascular events, this pilot study can help inform future studies investigating the mechanisms and effects of BPV in stroke. Elucidating this physiology may facilitate long-term patient monitoring and pharmacological management to mitigate the risk for recurrent stroke.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-023-45479-4