Fuzzy Stochastic Optimal Guaranteed Cost Control of Bio-Economic Singular Markovian Jump Systems

This paper establishes a bio-economic singular Markovian jump model by considering the price of the commodity as a Markov chain. The controller is designed for this system such that its biomass achieves the specified range with the least cost in a finite-time. Firstly, this system is described by Ta...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on cybernetics Vol. 45; no. 11; pp. 2512 - 2521
Main Authors Li, Li, Zhang, Qingling, Zhu, Baoyan
Format Journal Article
LanguageEnglish
Published United States IEEE 01.11.2015
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper establishes a bio-economic singular Markovian jump model by considering the price of the commodity as a Markov chain. The controller is designed for this system such that its biomass achieves the specified range with the least cost in a finite-time. Firstly, this system is described by Takagi-Sugeno fuzzy model. Secondly, a new design method of fuzzy state-feedback controllers is presented to ensure not only the regularity, nonimpulse, and stochastic singular finite-time boundedness of this kind of systems, but also an upper bound achieved for the cost function in the form of strict linear matrix inequalities. Finally, two examples including a practical example of eel seedling breeding are given to illustrate the merit and usability of the approach proposed in this paper.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2168-2267
2168-2275
DOI:10.1109/TCYB.2014.2375957