Cold shock injury and ecological costs of rapid cold hardening in the grain aphid Sitobion avenae (Hemiptera: Aphididae)
The ability of first instar nymphs and newly moulted pre-reproductive adults of the grain aphid S. avenae to rapidly cold harden was investigated. When nymphs reared at 20 °C were transferred directly to −8 °C for 3 h, there was 18% survival. This exposure was selected as the discriminating temperat...
Saved in:
Published in | Journal of insect physiology Vol. 50; no. 4; pp. 277 - 284 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.04.2004
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The ability of first instar nymphs and newly moulted pre-reproductive adults of the grain aphid
S. avenae to rapidly cold harden was investigated. When nymphs reared at 20 °C were transferred directly to −8 °C for 3 h, there was 18% survival. This exposure was selected as the discriminating temperature. Maximum increases in survival were achieved by acclimating nymphs for 2 h at 0 °C and adults for 3 h at 0 °C, resulting in survival of 83% and 68%, respectively. Cooling nymphs from 10 to 0 °C at different rates (1, 0.1 and 0.05 °C min
−1) also increased cold hardiness, with the slowest rate of 0.05 °C min
−1 conferring the highest survival following exposure to the discriminating temperature. Adult aphids also expressed a rapid cold hardening response but to a lesser extent, with survival increasing from 16% to 68% following 3 h at 0 °C. There were no ‘ecological costs’ associated with rapid cold hardening in terms of development, longevity or fecundity. The data support the hypothesis that rapid cold hardening can be induced during the cooling phase of natural diurnal temperature cycles, allowing insects to track daily changes in environmental temperatures. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
ISSN: | 0022-1910 1879-1611 |
DOI: | 10.1016/j.jinsphys.2004.01.003 |