Comparison of three different lactic acid bacteria-fermented proteins on RAW 264.7 osteoclast and MC3T3-E1 osteoblast differentiation

Osteoporosis is a state of bone weakening caused by an imbalance in osteoblast and osteoclast activity. In this study, the anti-osteoporotic effects of three proteins fermented by lactic acid bacteria (LAB) were assessed. Commercial proteins sodium caseinate (SC), whey protein isolate (WPI), and soy...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 13; no. 1; p. 21575
Main Authors Kim, Jae-Young, Song, Hyun Ji, Cheon, Sejin, An, Seokyoung, Lee, Chul Sang, Kim, Sae Hun
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 07.12.2023
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Osteoporosis is a state of bone weakening caused by an imbalance in osteoblast and osteoclast activity. In this study, the anti-osteoporotic effects of three proteins fermented by lactic acid bacteria (LAB) were assessed. Commercial proteins sodium caseinate (SC), whey protein isolate (WPI), and soy protein isolate (SPI) were fermented by LAB strains for 48 h. The fermented products (F-SC, F-WPI, and F-SPI, respectively) were used in an in vitro osteoclast and osteoblast-like cell model to assess their effects on bone health. Despite no difference in the results of TRAP staining of RANKL-induced osteoclastogenesis, F-WPI and F-SPI were effective in normalizing the altered gene expression of osteoclastogenesis markers such as TRAP, Nfatc1, RANK, and ATP6v0d. F-SPI was also effective in modulating osteoblasts by enhancing the expression of the osteoblastogenesis markers T1Col, Col2a, and OSX to levels higher than those in the SPI group, indicating that protein characteristics could be enhanced through bacterial fermentation. Moreover, these boosted effects of F-SPI may be involved with isoflavone-related metabolism during LAB-fermentation of SPI. These results demonstrate the potential of LAB-fermented proteins as dietary supplements to prevent bone loss. However, further understanding of its effects on balancing osteoblasts and osteoclasts and the underlying mechanisms is needed.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-023-49024-1