Modeling and Verification of an Acquisition Strategy for Wheel Loader’s Working Trajectories and Resistance
To overcome the difficulty of collecting the working resistance and working trajectory of a wheel loader, this paper constructs a statics model of the bucket working resistance and a kinematics model of the working trajectory in the shoveling process and analyzes the key parameters of measuring the...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 22; no. 16; p. 5993 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.08.2022
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | To overcome the difficulty of collecting the working resistance and working trajectory of a wheel loader, this paper constructs a statics model of the bucket working resistance and a kinematics model of the working trajectory in the shoveling process and analyzes the key parameters of measuring the working resistance and working trajectory. Based on this, a working resistance and working trajectory acquisition strategy is proposed. To verify the effectiveness of the acquisition strategy, the in-service operation data of fine sand and loose soil shoveled by the wheel loader are collected and analyzed. Then, the test-fitted working resistance and working trajectory are obtained, and the working trajectory is input into the RecurDyn–EDEM co-simulation model to obtain the simulation-fitted working resistance. Considering the complex working conditions of the wheel loader, it is difficult to obtain accurate working resistance, and the actual working resistance is also a relative value. Therefore, a strong correlation between the two curves indicates that the acquisition strategy of the wheel loader’s working trajectory and working resistance proposed in this paper is feasible. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 1424-8220 1424-8220 |
DOI: | 10.3390/s22165993 |