Direct bandgap emission from strain-doped germanium

Germanium (Ge) is an attractive material for Silicon (Si) compatible optoelectronics, but the nature of its indirect bandgap renders it an inefficient light emitter. Drawing inspiration from the significant expansion of Ge volume upon lithiation as a Lithium (Li) ion battery anode, here, we propose...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 15; no. 1; pp. 618 - 7
Main Authors Yuan, Lin-Ding, Li, Shu-Shen, Luo, Jun-Wei
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 19.01.2024
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Germanium (Ge) is an attractive material for Silicon (Si) compatible optoelectronics, but the nature of its indirect bandgap renders it an inefficient light emitter. Drawing inspiration from the significant expansion of Ge volume upon lithiation as a Lithium (Li) ion battery anode, here, we propose incorporating Li atoms into the Ge to cause lattice expansion to achieve the desired tensile strain for a transition from an indirect to a direct bandgap. Our first-principles calculations show that a minimal amount of 3 at.% Li can convert Ge from an indirect to a direct bandgap to possess a dipole transition matrix element comparable to that of typical direct bandgap semiconductors. To enhance compatibility with Si Complementary-Metal-Oxide-Semiconductors (CMOS) technology, we additionally suggest implanting noble gas atoms instead of Li atoms. We also demonstrate the tunability of the direct-bandgap emission wavelength through the manipulation of dopant concentration, enabling coverage of the mid-infrared to far-infrared spectrum. This Ge-based light-emitting approach presents exciting prospects for surpassing the physical limitations of Si technology in the field of photonics and calls for experimental proof-of-concept studies. The authors proposed a Silicon technology-compatible approach to convert Germanium from an indirect bandgap to a direct bandgap via doping. This is done to expand the lattice to produce tunable effective tensile strain, aiming towards the on-chip light sources.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-024-44916-w