Magnetism of ultrathin intergranular boundary regions in Nd–Fe–B permanent magnets

The magnetism of a thin grain-boundary (GB) phase that envelopes the Nd2Fe14B grains in optimally annealed Nd–Fe–B sintered magnets was investigated by electron holography. The phase shift measured from a thin-foil specimen containing a tilted amorphous GB phase (∼3nm in width) was −0.34rad, which i...

Full description

Saved in:
Bibliographic Details
Published inActa materialia Vol. 71; pp. 370 - 379
Main Authors Murakami, Y., Tanigaki, T., Sasaki, T.T., Takeno, Y., Park, H.S., Matsuda, T., Ohkubo, T., Hono, K., Shindo, D.
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.06.2014
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The magnetism of a thin grain-boundary (GB) phase that envelopes the Nd2Fe14B grains in optimally annealed Nd–Fe–B sintered magnets was investigated by electron holography. The phase shift measured from a thin-foil specimen containing a tilted amorphous GB phase (∼3nm in width) was −0.34rad, which is substantially smaller than that expected for the nonferromagnetic GB phase of −1.2rad. Simulations of the phase shift with various magnetization values suggest that the magnetic flux density of the GB phase is ∼1.0T. The observations imply significant exchange coupling between Nd2Fe14B grains, which can explain the avalanche propagation of magnetization reversal observed in sintered magnets.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1359-6454
1873-2453
DOI:10.1016/j.actamat.2014.03.013