Selection for Evi1 activation in myelomonocytic leukemia induced by hyperactive signaling through wild-type NRas

Activation of NRas signaling is frequently found in human myeloid leukemia and can be induced by activating mutations as well as by mutations in receptors or signaling molecules upstream of NRas. To study NRas-induced leukemogenesis, we retrovirally overexpressed wild-type NRas in a murine bone marr...

Full description

Saved in:
Bibliographic Details
Published inOncogene Vol. 32; no. 25; pp. 3028 - 3038
Main Authors Wolf, S, Rudolph, C, Morgan, M, Büsche, G, Salguero, G, Stripecke, R, Schlegelberger, B, Baum, C, Modlich, U
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 20.06.2013
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Activation of NRas signaling is frequently found in human myeloid leukemia and can be induced by activating mutations as well as by mutations in receptors or signaling molecules upstream of NRas. To study NRas-induced leukemogenesis, we retrovirally overexpressed wild-type NRas in a murine bone marrow transplantation (BMT) model in C57BL/6J mice. Overexpression of wild-type NRas caused myelomonocytic leukemias ∼3 months after BMT in the majority of mice. A subset of mice (30%) developed malignant histiocytosis similar to mice that received mutationally activated NRas(G12D)-expressing bone marrow. Aberrant Ras signaling was demonstrated in cells expressing mutationally active or wild-type NRas, as increased activation of Erk and Akt was observed in both models. However, more NRas(G12D) were found to be in the activated, GTP-bound state in comparison with wild-type NRas. Consistent with observations reported for primary human myelomonocytic leukemia cells, Stat5 activation was also detected in murine leukemic cells. Furthermore, clonal evolution was detected in NRas wild-type-induced leukemias, including expansion of clones containing activating vector insertions in known oncogenes, such as Evi1 and Prdm16 . In vitro cooperation of NRas and Evi1 improved long-term expansion of primary murine bone marrow cells. Evi1-positive cells upregulated Bcl-2 and may, therefore, provide anti-apoptotic signals that collaborate with the NRas-induced proliferative effects. As activation of Evi1 has been shown to coincide with NRAS mutations in human acute myeloid leukemia, our murine model recapitulates crucial events in human leukemogenesis.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0950-9232
1476-5594
DOI:10.1038/onc.2012.329