Real-Time Whole-Genome Sequencing for Surveillance of Listeria monocytogenes, France

During 2015-2016, we evaluated the performance of whole-genome sequencing (WGS) as a routine typing tool. Its added value for microbiological and epidemiologic surveillance of listeriosis was compared with that for pulsed-field gel electrophoresis (PFGE), the current standard method. A total of 2,74...

Full description

Saved in:
Bibliographic Details
Published inEmerging infectious diseases Vol. 23; no. 9; pp. 1462 - 1470
Main Authors Moura, Alexandra, Tourdjman, Mathieu, Leclercq, Alexandre, Hamelin, Estelle, Laurent, Edith, Fredriksen, Nathalie, Van Cauteren, Dieter, Bracq-Dieye, Hélène, Thouvenot, Pierre, Vales, Guillaume, Tessaud-Rita, Nathalie, Maury, Mylène M, Alexandru, Andreea, Criscuolo, Alexis, Quevillon, Emmanuel, Donguy, Marie-Pierre, Enouf, Vincent, de Valk, Henriette, Brisse, Sylvain, Lecuit, Marc
Format Journal Article
LanguageEnglish
Published United States U.S. National Center for Infectious Diseases 01.09.2017
Centers for Disease Control and Prevention
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:During 2015-2016, we evaluated the performance of whole-genome sequencing (WGS) as a routine typing tool. Its added value for microbiological and epidemiologic surveillance of listeriosis was compared with that for pulsed-field gel electrophoresis (PFGE), the current standard method. A total of 2,743 Listeria monocytogenes isolates collected as part of routine surveillance were characterized in parallel by PFGE and core genome multilocus sequence typing (cgMLST) extracted from WGS. We investigated PFGE and cgMLST clusters containing human isolates. Discrimination of isolates was significantly higher by cgMLST than by PFGE (p<0.001). cgMLST discriminated unrelated isolates that shared identical PFGE profiles and phylogenetically closely related isolates with distinct PFGE profiles. This procedure also refined epidemiologic investigations to include only phylogenetically closely related isolates, improved source identification, and facilitated epidemiologic investigations, enabling identification of more outbreaks at earlier stages. WGS-based typing should replace PFGE as the primary typing method for L. monocytogenes.
Bibliography:PMCID: PMC5572858
ISSN:1080-6040
1080-6059
DOI:10.3201/eid2309.170336