Hippocampal and motor regions contribute to memory benefits after enacted encoding: cross-sectional and longitudinal evidence
Abstract The neurobiological underpinnings of action-related episodic memory and how enactment contributes to efficient memory encoding are not well understood. We examine whether individual differences in level (n = 338) and 5-year change (n = 248) in the ability to benefit from motor involvement d...
Saved in:
Published in | Cerebral cortex (New York, N.Y. 1991) Vol. 33; no. 6; pp. 3080 - 3097 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Oxford University Press
10.03.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Abstract
The neurobiological underpinnings of action-related episodic memory and how enactment contributes to efficient memory encoding are not well understood. We examine whether individual differences in level (n = 338) and 5-year change (n = 248) in the ability to benefit from motor involvement during memory encoding are related to gray matter (GM) volume, white matter (WM) integrity, and dopamine-regulating genes in a population-based cohort (age range = 25–80 years). A latent profile analysis identified 2 groups with similar performance on verbal encoding but with marked differences in the ability to benefit from motor involvement during memory encoding. Impaired ability to benefit from enactment was paired with smaller HC, parahippocampal, and putamen volume along with lower WM microstructure in the fornix. Individuals with reduced ability to benefit from encoding enactment over 5 years were characterized by reduced HC and motor cortex GM volume along with reduced WM microstructure in several WM tracts. Moreover, the proportion of catechol-O-methyltransferase-Val-carriers differed significantly between classes identified from the latent-profile analysis. These results provide converging evidence that individuals with low or declining ability to benefit from motor involvement during memory encoding are characterized by low and reduced GM volume in regions critical for memory and motor functions along with altered WM microstructure. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1047-3211 1460-2199 1460-2199 |
DOI: | 10.1093/cercor/bhac262 |