A network including PU.1, Vav1 and miR-142-3p sustains ATRA-induced differentiation of acute promyelocytic leukemia cells - a short report
Purpose Reduced expression of miR-142-3p has been found to be associated with the development of various subtypes of myeloid leukemia, including acute promyelocytic leukemia (APL). In APL-derived cells, miR-142-3p expression can be restored by all- trans retinoic acid (ATRA), which induces the compl...
Saved in:
Published in | Cellular oncology (Dordrecht) Vol. 39; no. 5; pp. 483 - 489 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer Netherlands
01.10.2016
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Purpose
Reduced expression of miR-142-3p has been found to be associated with the development of various subtypes of myeloid leukemia, including acute promyelocytic leukemia (APL). In APL-derived cells, miR-142-3p expression can be restored by all-
trans
retinoic acid (ATRA), which induces the completion of their maturation program. Here, we aimed to assess whether PU.1, essential for ATRA-induced gene transcription, regulates the expression of miR-142-3p in APL-derived cells and, based on the established cooperation between PU.1 and Vav1 in modulating gene expression, to evaluate the role of Vav1 in restoring the expression of miR-142-3p.
Methods
ATRA-induced increases in PU.1 and Vav1 expression in APL-derived NB4 cells were counteracted with specific siRNAs, and the expression of miR-142-3p was measured by quantitative real-time PCR (qRT-PCR). The recruitment of PU.1 and/or Vav1 to the regulatory region of
miR-142
was assessed by quantitative chromatin immunoprecipitation (Q-ChIP). Synthetic inhibitors or mimics for miR-142-3p were used to assess whether this miRNA plays a role in regulating the expression of PU.1 and/or Vav1.
Results
We found that the expression of miR-142-3p in differentiating APL-derived NB4 cells is dependent on PU.1, and that Vav1 is essential for the recruitment of this transcription factor to its cis-binding element on the
miR-142
promoter. In addition, we found that in ATRA-treated NB4 cells miR-142-3p sustains agonist-induced increases in both PU.1 and Vav1.
Conclusions
Our results suggest the existence of a Vav1/PU.1/miR-142-3p network that supports ATRA-induced differentiation in APL-derived cells. Since selective regulation of miRNAs may play a role in the future treatment of hematopoietic malignancies, our results may provide a basis for the development of new therapeutic strategies to restore the expression of miR-142-3p. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2211-3428 2211-3436 |
DOI: | 10.1007/s13402-016-0292-6 |