Pan-cancer analysis revealing the multidimensional expression and prognostic and immunologic roles of TGFB1 in cancer

Objective This study aimed to perform an integrated pan-cancer analysis to characterize the expression patterns, prognostic value, genetic alterations, and immunologic roles of transforming growth factor beta 1 (TGFB1) across diverse human cancer types. Methods Bioinformatics analyses were conducted...

Full description

Saved in:
Bibliographic Details
Published inJournal of international medical research Vol. 52; no. 1; p. 3000605231221361
Main Authors Chen, Zhitao, Ding, Chenchen, Chen, Jun, Zheng, Shusen, Li, Qiyong
Format Journal Article
LanguageEnglish
Published London, England SAGE Publications 01.01.2024
Sage Publications Ltd
SAGE Publishing
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Objective This study aimed to perform an integrated pan-cancer analysis to characterize the expression patterns, prognostic value, genetic alterations, and immunologic roles of transforming growth factor beta 1 (TGFB1) across diverse human cancer types. Methods Bioinformatics analyses were conducted using multiple public databases including The Cancer Genome Atlas, Genotype-Tissue Expression, Clinical Proteomic Tumor Analysis Consortium, TIMER2, GEPIA2, cBioPortal, StringDB, and others. Differential expression, survival, immune correlation, and protein interaction network analyses were performed. Results TGFB1 was overexpressed in several tumor types compared with that in normal tissues. High TGFB1 expression was associated with an advanced stage and poorer prognosis in certain cancers. TGFB1 mutations occurred in 1.3% of 10,967 cases surveyed. TGFB1 expression correlated with tumor-infiltrating immune cells and immunotherapy-related genes. Conclusions This comprehensive multi-omics analysis revealed the complex expression and prognostic landscape of TGFB1 across cancers. TGFB1 is emerging as a potential immunotherapeutic target in certain contexts. Further research should elucidate its multifaceted tumor-promoting and tumor-suppressive mechanisms. Our pan-cancer analysis provides new insights into TGFB1 as a prognostic biomarker and immunotherapeutic target in human cancers, and our findings may guide future preclinical and clinical investigations of TGFB1-directed therapies.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0300-0605
1473-2300
1473-2300
DOI:10.1177/03000605231221361