Shaping triple-conducting semiconductor BaCo0.4Fe0.4Zr0.1Y0.1O3-δ into an electrolyte for low-temperature solid oxide fuel cells

Interest in low-temperature operation of solid oxide fuel cells is growing. Recent advances in perovskite phases have resulted in an efficient H + /O 2- /e - triple-conducting electrode BaCo 0.4 Fe 0.4 Zr 0.1 Y 0.1 O 3-δ for low-temperature fuel cells. Here, we further develop BaCo 0.4 Fe 0.4 Zr 0.1...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 10; no. 1; p. 1707
Main Authors Xia, Chen, Mi, Youquan, Wang, Baoyuan, Lin, Bin, Chen, Gang, Zhu, Bin
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 12.04.2019
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Interest in low-temperature operation of solid oxide fuel cells is growing. Recent advances in perovskite phases have resulted in an efficient H + /O 2- /e - triple-conducting electrode BaCo 0.4 Fe 0.4 Zr 0.1 Y 0.1 O 3-δ for low-temperature fuel cells. Here, we further develop BaCo 0.4 Fe 0.4 Zr 0.1 Y 0.1 O 3-δ for electrolyte applications by taking advantage of its high ionic conduction while suppressing its electronic conduction through constructing a BaCo 0.4 Fe 0.4 Zr 0.1 Y 0.1 O 3-δ -ZnO p-n heterostructure. With this approach, it has been demonstrated that BaCo 0.4 Fe 0.4 Zr 0.1 Y 0.1 O 3-δ can be applied in a fuel cell with good electrolyte functionality, achieving attractive ionic conductivity and cell performance. Further investigation confirms the hybrid H + /O 2- conducting capability of BaCo 0.4 Fe 0.4 Zr 0.1 Y 0.1 O 3-δ -ZnO. An energy band alignment mechanism based on a p-n heterojunction is proposed to explain the suppression of electronic conductivity and promotion of ionic conductivity in the heterostructure. Our findings demonstrate that BaCo 0.4 Fe 0.4 Zr 0.1 Y 0.1 O 3-δ is not only a good electrode but also a highly promising electrolyte. The approach reveals insight for developing advanced low-temperature solid oxide fuel cell electrolytes. Solid oxide fuel cells enable efficient electricity generation at high temperatures. Here the authors incorporate a mixed ion-electron semiconductor into another semiconductor to form a p-n junction to suppress electron conduction and enhance ion conduction, leading to a low-temperature electrolyte.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-019-09532-z