A new design method for the transition region of the valve plate for an axial piston pump
The optimization of the valve plate transition region is an important way of reducing the noise emission for an axial piston pump. However, the optimized methods through simulation or experiment are actually trial and error, and they cannot indicate the precise structural parameters of the valve pla...
Saved in:
Published in | Journal of Zhejiang University. A. Science Vol. 16; no. 3; pp. 229 - 240 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Hangzhou
Zhejiang University Press
01.03.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The optimization of the valve plate transition region is an important way of reducing the noise emission for an axial piston pump. However, the optimized methods through simulation or experiment are actually trial and error, and they cannot indicate the precise structural parameters of the valve plate transition region. In this study, a new design method for the transition region of valve plate based on the matching of flow area and reduction of transient reverse flow was proposed, and with which a valve plate was designed. Then, the impact of the flow ripple in the discharge line of an axial piston pump and the pressure overshoot and undershoot in the piston chamber on hydraulic and structural noise for axial piston pump is discussed. The noise reduction effect of the axial piston pump with this valve plate was analyzed by adopting a flow characteristic simulation model. Finally, the results showed that the application of this design method could contribute much to the reduction of the flow ripple and elimination of the pressure overshoot and undershoot. As a consequence, the method can be used in the design of a low-noise open circuit axial piston pump. |
---|---|
Bibliography: | The optimization of the valve plate transition region is an important way of reducing the noise emission for an axial piston pump. However, the optimized methods through simulation or experiment are actually trial and error, and they cannot indicate the precise structural parameters of the valve plate transition region. In this study, a new design method for the transition region of valve plate based on the matching of flow area and reduction of transient reverse flow was proposed, and with which a valve plate was designed. Then, the impact of the flow ripple in the discharge line of an axial piston pump and the pressure overshoot and undershoot in the piston chamber on hydraulic and structural noise for axial piston pump is discussed. The noise reduction effect of the axial piston pump with this valve plate was analyzed by adopting a flow characteristic simulation model. Finally, the results showed that the application of this design method could contribute much to the reduction of the flow ripple and elimination of the pressure overshoot and undershoot. As a consequence, the method can be used in the design of a low-noise open circuit axial piston pump. Axial piston pump, Valve plate, Flow ripple, Pressure overshoot 33-1236/O4 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1673-565X 1862-1775 |
DOI: | 10.1631/jzus.a1400266 |