Path Loss Investigation in Hall Environment at Centimeter and Millimeter-Wave Bands
The millimeter-wave (mmWave) frequency is considered a viable radio wave band for fifth-generation (5G) mobile networks, owing to its ability to access a vast spectrum of resources. However, mmWave suffers from undesirable characteristics such as increased attenuation during transmission. Therefore,...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 22; no. 17; p. 6593 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
31.08.2022
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The millimeter-wave (mmWave) frequency is considered a viable radio wave band for fifth-generation (5G) mobile networks, owing to its ability to access a vast spectrum of resources. However, mmWave suffers from undesirable characteristics such as increased attenuation during transmission. Therefore, a well-fitted path loss model to a specific environment can help manage optimal power delivery in the receiver and optimal transmitter power in the transmitter in the mmWave band. This study investigates large-scale path loss models in a university hall environment with a real-measured path loss dataset using directional horn antennas in co-polarization (H–H) and tracking antenna systems (TAS) in line-of-sight (LOS) circumstances between the transmitter and receptor at mmWave and centimeter-level bands. Although the centimeter-level band is used in certain industrialized nations, path loss characteristics in a university hall environment have not been well-examined. Consequently, this study aims to bridge this research gap. The results of this study indicate that, in general, the large-scale floating-intercept (FI) model gives a satisfactory performance in fitting the path loss both in the center and wall side links. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1424-8220 1424-8220 |
DOI: | 10.3390/s22176593 |