A Review of N-(1,3-Dimethylbutyl)-N′-phenyl-p-Phenylenediamine (6PPD) and Its Derivative 6PPD-Quinone in the Environment
As an antioxidant and antiozonant, N-(1,3-Dimethylbutyl)-N′-phenyl-p-phenylenediamine (6PPD) is predominantly used in the rubber industry to prevent degradation. However, 6PPD can be ozonated to generate a highly toxic transformation product called N-(1,3-Dimethylbutyl)-N′-phenyl-p-phenylenediamine...
Saved in:
Published in | Toxics (Basel) Vol. 12; no. 6; p. 394 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
28.05.2024
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | As an antioxidant and antiozonant, N-(1,3-Dimethylbutyl)-N′-phenyl-p-phenylenediamine (6PPD) is predominantly used in the rubber industry to prevent degradation. However, 6PPD can be ozonated to generate a highly toxic transformation product called N-(1,3-Dimethylbutyl)-N′-phenyl-p-phenylenediamine quinone (6PPD-quinone), which is toxic to aquatic and terrestrial organisms. Thus, 6PPD and 6PPD-quinone, two emerging contaminants, have attracted extensive attention recently. This review discussed the levels and distribution of 6PPD and 6PPD-quinone in the environment and investigated their toxic effects on a series of organisms. 6PPD and 6PPD-quinone have been widely found in air, water, and dust, while data on soil, sediment, and biota are scarce. 6PPD-quinone can cause teratogenic, developmental, reproductive, neuronal, and genetic toxicity for organisms, at environmentally relevant concentrations. Future research should pay more attention to the bioaccumulation, biomagnification, transformation, and toxic mechanisms of 6PPD and 6PPD-quinone. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 These authors contributed equally to this work. |
ISSN: | 2305-6304 2305-6304 |
DOI: | 10.3390/toxics12060394 |