Stream Ciphers: A Practical Solution for Efficient Homomorphic-Ciphertext Compression
In typical applications of homomorphic encryption, the first step consists for Alice to encrypt some plaintext m under Bob’s public key \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepac...
Saved in:
Published in | Fast Software Encryption Vol. 9783; pp. 313 - 333 |
---|---|
Main Authors | , , , , , , |
Format | Book Chapter |
Language | English |
Published |
Germany
Springer Berlin / Heidelberg
2016
Springer Berlin Heidelberg |
Series | Lecture Notes in Computer Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In typical applications of homomorphic encryption, the first step consists for Alice to encrypt some plaintext m under Bob’s public key \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathsf {pk}$$\end{document} and to send the ciphertext \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$c = \mathsf {HE}_{\mathsf {pk}}(m)$$\end{document} to some third-party evaluator Charlie. This paper specifically considers that first step, i.e. the problem of transmitting c as efficiently as possible from Alice to Charlie. As previously noted, a form of compression is achieved using hybrid encryption. Given a symmetric encryption scheme \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathsf {E}$$\end{document}, Alice picks a random key k and sends a much smaller ciphertext \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$c' = (\mathsf {HE}_{\mathsf {pk}}(k), \mathsf {E}_k(m))$$\end{document} that Charlie decompresses homomorphically into the original c using a decryption circuit \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathcal {C}_{{\mathsf {E}^{-1}}}$$\end{document}.
In this paper, we revisit that paradigm in light of its concrete implementation constraints; in particular \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathsf {E}$$\end{document} is chosen to be an additive IV-based stream cipher. We investigate the performances offered in this context by Trivium, which belongs to the eSTREAM portfolio, and we also propose a variant with 128-bit security: Kreyvium. We show that Trivium, whose security has been firmly established for over a decade, and the new variant Kreyvium have an excellent performance. |
---|---|
Bibliography: | This work has received a French governmental support granted to the COMIN Labs excellence laboratory and managed by the National Research Agency in the “Investing for the Future” program under reference ANR-10-LABX-07-01, has been supported in part by the Frenchs FUI project CRYPTOCOMP and by the European Union’s H2020 Programme under grant agreement number ICT-644209 and under project number 645622 PQCRYPTO. |
ISBN: | 9783662529928 3662529920 |
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/978-3-662-52993-5_16 |