Microwave-Assisted Cross-Coupling and Hydrogenation Chemistry by Using Heterogeneous Transition-Metal Catalysts: An Evaluation of the Role of Selective Catalyst Heating

The concept of specific microwave effects in solid/liquid catalytic processes resulting from the selective heating of a microwave‐absorbing heterogeneous transition‐metal catalyst by using 2.45 GHz microwave irradiation was evaluated. As model transformations Ni/C‐, Cu/C‐, Pd/C‐, and Pd/Al2O3‐cataly...

Full description

Saved in:
Bibliographic Details
Published inChemistry : a European journal Vol. 15; no. 43; pp. 11608 - 11618
Main Authors Irfan, Muhammed, Fuchs, Michael, Glasnov, Toma N., Kappe, C. Oliver
Format Journal Article
LanguageEnglish
Published Weinheim WILEY-VCH Verlag 02.11.2009
WILEY‐VCH Verlag
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The concept of specific microwave effects in solid/liquid catalytic processes resulting from the selective heating of a microwave‐absorbing heterogeneous transition‐metal catalyst by using 2.45 GHz microwave irradiation was evaluated. As model transformations Ni/C‐, Cu/C‐, Pd/C‐, and Pd/Al2O3‐catalyzed carbon–carbon/carbon–heteroatom cross‐couplings and hydrogenation reactions were investigated. To probe the existence of specific microwave effects by means of selective catalyst heating in these transformations, control experiments comparing microwave dielectric heating and conventional thermal heating at the same reaction temperature were performed. Although the supported metal catalysts were experimentally found to be strongly microwave absorbing, for all chemistry examples investigated herein no differences in reaction rate or selectivity between microwave and conventional heating experiments under carefully controlled conditions were observed. This was true also for reactions that use low‐absorbing or microwave transparent solvents, and was independent of the microwave absorbtivity of the catalyst support material. In the case of hydrogenation reactions, the stirring speed was found to be a critical factor on the mass transfer between gas and liquid phase, influencing the rate of the hydrogenation in both microwave and conventionally heated experiments. Stir crazy! Selective heating of supported Ni, Cu, or Pd metal plays no role in microwave‐assisted transition‐metal‐catalyzed C–C/C–O cross‐coupling reactions and the hydrogenation of olefins (see scheme). However, the stirring speed has a major influence on the rate of hydrogenation as a result of improved mass transfer.
Bibliography:Higher Education Commission of Pakistan
Christian Doppler Society (CDG)
istex:D7C1780DE5036BDFC7F070F4B5DF2E4D3A94FFEA
BASF
ArticleID:CHEM200902044
ark:/67375/WNG-XLBNHS3T-4
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0947-6539
1521-3765
DOI:10.1002/chem.200902044