Filtration rate dependence of hyaluronan reflection by joint-to-lymph barrier: evidence for concentration polarisation

Hyaluronan (HA), a component of synovial fluid, buffers fluid loss from joints. To explain this, a quantitative theory for HA concentration polarisation at a partially sieving synovial lining was developed. The theory predicts a fall in HA reflected fraction R with increased filtration rate. To test...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of physiology Vol. 557; no. 3; pp. 909 - 922
Main Authors Sabaratnam, S., Mason, R. M., Levick, J. R.
Format Journal Article
LanguageEnglish
Published 9600 Garsington Road , Oxford , OX4 2DQ , UK The Physiological Society 15.06.2004
Blackwell Science Ltd
Blackwell Science Inc
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Hyaluronan (HA), a component of synovial fluid, buffers fluid loss from joints. To explain this, a quantitative theory for HA concentration polarisation at a partially sieving synovial lining was developed. The theory predicts a fall in HA reflected fraction R with increased filtration rate. To test this, knees of anaesthetised rabbits were infused with HA and fluorescein–dextran (FD) at constant trans-synovial filtration rates of 6–89 μl min −1 . Samples of femoral lymph, mixed intra-articular fluid and subsynovial fluid after ≥ 3 h were analysed by high-performance liquid chromatography. R was calculated as (1 – downstream/upstream concentration), using [FD] to adjust for joint lymph dilution in femoral lymph. Intra-articular HA concentration after ≥ 3 h, 0.47 ± 0.02 mg ml −1 (mean ± s.e.m. , n = 31), exceeded the infusate concentration, 0.20 mg ml −1 , while subsynovial and lymph [HA] were reduced relative to [FD]. The changes in [HA] demonstrated synovial molecular sieving of HA. R from cavity to lymph ( R lymph ) fell monotonically from 0.93 at 6 μl min −1 to 0.14 at 89 μl min −1 ( P < 0.0001, regression analysis, n = 33). R values calculated from the intra-articular HA accumulation ( R asp ) or the low subsynovial concentrations ( R syn ) were similar negative functions of filtration rate. R for lymphatic capillary endothelium ( R endo ), calculated from lymph/subsynovial concentration ratios, was effectively zero (−0.03 ± 0.18, n = 21), confirming that synovium, not initial lymphatic endothelium, is the reflection site. Logarithmic linearisation of the results evaluated the synovial HA reflection coefficient as 0.91. In conclusion, the existence of concentration polarisation during joint fluid drainage was supported by the demonstration of a negative relation between filtration rate and R lymph , R asp and R syn .
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0022-3751
1469-7793
DOI:10.1113/jphysiol.2004.063529