Fault-tolerant control of Markovian jump stochastic systems via the augmented sliding mode observer approach

This paper is concerned with the stabilization problem for a class of Markovian stochastic jump systems against sensor fault, actuator fault and input disturbances simultaneously. In the proposed approach, the original plant is first augmented into a new descriptor system, where the state vector, di...

Full description

Saved in:
Bibliographic Details
Published inAutomatica (Oxford) Vol. 50; no. 7; pp. 1825 - 1834
Main Authors Li, Hongyi, Gao, Huijun, Shi, Peng, Zhao, Xudong
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.07.2014
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper is concerned with the stabilization problem for a class of Markovian stochastic jump systems against sensor fault, actuator fault and input disturbances simultaneously. In the proposed approach, the original plant is first augmented into a new descriptor system, where the state vector, disturbance vector and fault vector are assembled into the state vector of the new system. Then, a novel augmented sliding mode observer is presented for the augmented system and is utilized to eliminate the effects of sensor faults and disturbances. An observer-based mode-dependent control scheme is developed to stabilize the resulting overall closed-loop jump system. A practical example is given to illustrate the effectiveness of the proposed design methodology.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0005-1098
1873-2836
DOI:10.1016/j.automatica.2014.04.006