Phosphoinositide 3-kinase/AKT Signaling Can Promote AIB1 Stability Independently of GSK3 Phosphorylation

The transcriptional coactivator AIB1 is an oncogene overexpressed in different types of tumors, including breast cancer. Although the subcellular compartimentalization of AIB1 seems to be intimately linked to abnormal proliferation, the molecular mechanisms that regulate its subcellular distribution...

Full description

Saved in:
Bibliographic Details
Published inCancer research (Chicago, Ill.) Vol. 68; no. 13; pp. 5450 - 5459
Main Authors FERRERO, Macarena, AVIVAR, Alvaro, GARCIA-MACIAS, Maria Carmen, DE MORA, Jaime Font
Format Journal Article
LanguageEnglish
Published Philadelphia, PA American Association for Cancer Research 01.07.2008
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The transcriptional coactivator AIB1 is an oncogene overexpressed in different types of tumors, including breast cancer. Although the subcellular compartimentalization of AIB1 seems to be intimately linked to abnormal proliferation, the molecular mechanisms that regulate its subcellular distribution are not well defined. Here, we report that the nuclear accumulation and half-life of AIB1 vary between cancer cell lines. Using these differences as an experimental model, our results reveal that alterations to the Akt signaling pathway and nuclear export determine the stability of AIB1 and nuclear content of this coactivator. Moreover, our results show that AIB1 is degraded in the nucleus by the proteasome in an ubiquitin-dependent manner. However, this process does not require phosphorylation by GSK3, thereby revealing an alternative mechanism for regulating the turnover of AIB1. We define a new region at the carboxy terminus of AIB1 that is required for proteasome-dependent transcriptional activation and is preceded by a PEST domain that is required for adequate protein turnover. Based on differences in Akt signaling and the subcellular distribution of AIB1 between different cell lines, our results suggest that dysregulation of nuclear shuttling and proteasomal degradation may modulate the oncogenic potential of AIB1.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0008-5472
1538-7445
DOI:10.1158/0008-5472.CAN-07-6433