Insights into the Genomic Architecture of Seed and Pod Quality Traits in the U.S. Peanut Mini-Core Diversity Panel
Traits such as seed weight, shelling percent, percent sound mature kernels, and seed dormancy determines the quality of peanut seed. Few QTL (quantitative trait loci) studies using biparental mapping populations have identified QTL for seed dormancy and seed grade traits. Here, we report a genome-wi...
Saved in:
Published in | Plants (Basel) Vol. 11; no. 7; p. 837 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
22.03.2022
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Traits such as seed weight, shelling percent, percent sound mature kernels, and seed dormancy determines the quality of peanut seed. Few QTL (quantitative trait loci) studies using biparental mapping populations have identified QTL for seed dormancy and seed grade traits. Here, we report a genome-wide association study (GWAS) to detect marker-trait associations for seed germination, dormancy, and seed grading traits in peanut. A total of 120 accessions from the U.S. peanut mini-core collection were evaluated for seed quality traits and genotyped using Axiom SNP (single nucleotide polymorphism) array for peanut. We observed significant variation in seed quality traits in different accessions and different botanical varieties. Through GWAS, we were able to identify multiple regions associated with sound mature kernels, seed weight, shelling percent, seed germination, and dormancy. Some of the genomic regions that were SNP associated with these traits aligned with previously known QTLs. For instance, QTL for seed dormancy has been reported on chromosome A05, and we also found SNP on the same chromosome associated with seed dormancy, explaining around 20% of phenotypic variation. In addition, we found novel genomic regions associated with seed grading, seed germination, and dormancy traits. SNP markers associated with seed quality and dormancy identified here can accelerate the selection process. Further, exploring the function of candidate genes identified in the vicinity of the associated marker will assist in understanding the complex genetic network that governs seed quality. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2223-7747 2223-7747 |
DOI: | 10.3390/plants11070837 |