An Optimized Model of Hypertrophic Preconditioning Confers Cardioprotection in the Mouse
Conventional models of hypertrophic preconditioning (C-HP) can be established surgically through transverse aortic constriction (TAC) → deconstriction (De-TAC) → reconstriction (Re-TAC) characterized by dynamic afterload while it exerts technical difficulty on operators and poses high mortality duri...
Saved in:
Published in | The Journal of surgical research Vol. 264; pp. 544 - 552 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.08.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Conventional models of hypertrophic preconditioning (C-HP) can be established surgically through transverse aortic constriction (TAC) → deconstriction (De-TAC) → reconstriction (Re-TAC) characterized by dynamic afterload while it exerts technical difficulty on operators and poses high mortality during perioperative period in mice. We aimed to introduce an optimized method for obtaining a hypertrophic preconditioning (O-HP) model for further study on cardiac hypertrophy.
Ninety mice were divided into four groups: sham, TAC, C-HP, and O-HP. The sham group was exerted on three-time thoracotomies. The TAC group experienced twice thoracotomies and one TAC operation. C-HP and O-HP groups were given TAC, De-TAC, and Re-TAC operation at day 0, day 3, and day 7 in conventional and optimized method, respectively. We optimized the operating procedure in O-HP mice compared with the C-HP group by (1) leaving a ∼3-cm suture fixed in the subcutaneous layer after aortic constriction in TAC surgery (2) using two small forceps to untie the constriction knot instead of cutting it in the De-TAC operation. Ultrasound biomicroscopy was used for hemodynamics and cardiac function detection. Four weeks after the third surgery, all mice were sacrificed and pathology was analyzed among four groups.
Four weeks after Re-TAC, the survival of O-HP mice was 63.3% while that of C-HP was 26.7%. Ultrasound biomicroscopy showed a successful establishment of HP models. C-HP and O-HP mice had improved cardiac structure and function indicated by left ventricular end-systolic diameter, left ventricular end-systolic posterior wall thickness, left ventricular ejection fraction, and left ventricular fractional shortening than the TAC group. Pathological analysis showed O-HP as well as C-HP had less hypertrophy than the TAC mice.
Our results provide a rapid, safe, efficient, and reproducible method for optimized establishment of the HP model, which will facilitate studies for early intervention and prevention of left ventricular hypertrophy and heart failure. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0022-4804 1095-8673 1095-8673 |
DOI: | 10.1016/j.jss.2020.11.087 |