Changes in Browning Degree and Reducibility of Polyphenols during Autoxidation and Enzymatic Oxidation

In the present study, the browning degree and reducing power of browning products of catechin (CT), epicatechin (EC), caffeic acid (CA), and chlorogenic acid (CGA) in autoxidation and enzymatic oxidation were investigated. Influencing factors were considered, such as pH, substrate species and compos...

Full description

Saved in:
Bibliographic Details
Published inAntioxidants Vol. 10; no. 11; p. 1809
Main Authors Zhou, Xuan, Iqbal, Aamir, Li, Jiaxing, Liu, Chang, Murtaza, Ayesha, Xu, Xiaoyun, Pan, Siyi, Hu, Wanfeng
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 15.11.2021
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In the present study, the browning degree and reducing power of browning products of catechin (CT), epicatechin (EC), caffeic acid (CA), and chlorogenic acid (CGA) in autoxidation and enzymatic oxidation were investigated. Influencing factors were considered, such as pH, substrate species and composition, and eugenol. Results show that polyphenols' autoxidation was intensified in an alkaline environment, but the reducing power was not improved. Products of enzymatic oxidation at a neutral pH have higher reducing power than autoxidation. In enzymatic oxidation, the browning degree of mixed substrates was higher than that of a single polyphenol. The reducing power of flavonoid mixed solution (CT and EC) was higher than those of phenolic acids' (CA and CGA) in autoxidation and enzymatic oxidation. Eugenol activity studies have shown that eugenol could increase autoxidation browning but inhibit enzymatic browning. Activity test and molecular docking results show that eugenol could inhibit tyrosinase.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2076-3921
2076-3921
DOI:10.3390/antiox10111809