Bio-functionalized dense-silica nanoparticles for MR/NIRF imaging of CD146 in gastric cancer

Nano dense-silica (dSiO2) has many advantages such as adjustable core-shell structure, multiple drug delivery, and controllable release behavior. Improving the gastric tumor-specific targeting efficiency based on the development of various strategies is crucial for anti-cancer drug delivery systems....

Full description

Saved in:
Bibliographic Details
Published inInternational journal of nanomedicine Vol. 10; no. default; pp. 749 - 763
Main Authors Wang, Pu, Qu, Yazhuo, Li, Chuan, Yin, Li, Shen, Caifei, Chen, Wei, Yang, Shiming, Bian, Xiuwu, Fang, Dianchun
Format Journal Article
LanguageEnglish
Published New Zealand Taylor & Francis Ltd 01.01.2015
Dove Press
Dove Medical Press
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Nano dense-silica (dSiO2) has many advantages such as adjustable core-shell structure, multiple drug delivery, and controllable release behavior. Improving the gastric tumor-specific targeting efficiency based on the development of various strategies is crucial for anti-cancer drug delivery systems. Superparamagnetic iron oxide nanoparticles (SPION) were coated with dSiO2 as core-shell nanoparticles, and labeled with near infra-red fluorescence (NIRF) dye 800ZW (excitation wavelength: 778 nm/emission wavelength: 806 nm) and anti-CD146 monoclonal antibody YY146 for magnetic resonance (MR)/NIRF imaging study in xenograft gastric cancer model. The morphology and the size of pre- and postlabeling SPION@dSiO2 core-shell nanoparticles were characterized using transmission electron microscopy. Iron content in SPION@dSiO2 nanoparticles was measured by inductively coupled plasma optical emission spectrometry. Fluorescence microscopy and fluorescence-activated cell sorter studies were carried out to confirm the binding specificity of YY146 and 800ZW-SPION@dSiO2-YY146 on MKN45 cells. In vivo and in vitro NIRF imaging, control (nanoparticles only) and blocking studies, and histology were executed on MKN45 tumor-bearing nude mice to estimate the affinity of 800ZW-SPION@dSiO2-YY146 to target tumor CD146. 800ZW-SPION@dSiO2-YY146 nanoparticles were uniformly spherical in shape and dispersed evenly in a cell culture medium. The diameter of the nanoparticle was 20-30 nm with 15 nm SPION core and ~10 nm SiO2 shell, and the final concentration was 1.7 nmol/mL. Transverse relaxivity of SPION@dSiO2 dispersed in water was measured to be 110.57 mM(-1)·s(-1). Fluorescence activated cell sorter analysis of the nanoparticles in MKN45 cells showed 14-fold binding of 800ZW-SPION@dSiO2-YY146 more than the control group 800ZW-SPION@dSiO2. Series of NIRF imaging post intravenous injection of 800ZW-SPION@dSiO2-YY146 demonstrated that the MKN45 xenograft tumor model could be clearly identified as early as a time point of 30 minutes postinjection. Quantitative analysis revealed that the tumor uptake peaked at 24 hours postinjection. This is the first successful study of functional nanoparticles for MR/NIRF imaging of cell surface glycoprotein CD146 in gastric cancer model. Our results suggest that 800ZW-SPION@dSiO2-YY146 nanoparticles will be applicable in tumor for image-guided therapy/surgery.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally to this work
ISSN:1178-2013
1176-9114
1178-2013
DOI:10.2147/IJN.S62837