Subject-specific computational simulation of left ventricular flow based on magnetic resonance imaging

A detailed investigation of left ventricle (LV) flow patterns could improve our understanding of the function of the heart and provide further insight into the mechanisms of heart failure. This study presents patient-specific modelling with magnetic resonance imaging (MRI) to investigate LV blood fl...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine Vol. 222; no. 4; pp. 475 - 485
Main Authors Long, Q, Merrifield, R, Xu, X Y, Kilner, P, Firmin, D N, Yang, G-Z
Format Journal Article
LanguageEnglish
Published London, England SAGE Publications 01.05.2008
SAGE PUBLICATIONS, INC
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A detailed investigation of left ventricle (LV) flow patterns could improve our understanding of the function of the heart and provide further insight into the mechanisms of heart failure. This study presents patient-specific modelling with magnetic resonance imaging (MRI) to investigate LV blood flow patterns in normal subjects. In the study, the prescribed LV wall movements based on the MRI measurements drove the blood flow in and out of the LV in computational fluid dynamics simulation. For the six subjects studied, the simulated LV flow swirls towards the aortic valve and is ejected into the ascending aorta with a vertical flow pattern that follows the left-hand rule. In diastole, the inflow adopts a reasonably straight route (with no significant secondary flow) towards the apex in the rapid filling phase with slight variations in the jet direction between different cases. When the jet reaches about two thirds of the distance from the inflow plane to the apex, the blood flow starts to change direction and swirls towards the apex. In the more slowly filling phase, a centrally located jet is evident with vortices located on both sides of the jet on an anterior—posterior plane that passes through the mitral and aortic valves. In the inferior—superior plane, a main vortex appears for most of the cases in which an anticlockwise vortex appears for three cases and a clockwise vortex occurs for one case. The simulated flow patterns agree well qualitatively with MRI-measured flow fields.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0954-4119
2041-3033
DOI:10.1243/09544119JEIM310