Competition between Memory Systems: Acetylcholine Release in the Hippocampus Correlates Negatively with Good Performance on an Amygdala-Dependent Task
Lesions of the amygdala impair acquisition of a food conditioned place preference (CPP) task. In contrast, lesions of the fornix facilitate acquisition on this task, showing that an intact hippocampal system can interfere with learning an amygdala-dependent task. Our recent findings indicate that ac...
Saved in:
Published in | The Journal of neuroscience Vol. 22; no. 3; pp. 1171 - 1176 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Soc Neuroscience
01.02.2002
Society for Neuroscience |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Lesions of the amygdala impair acquisition of a food conditioned place preference (CPP) task. In contrast, lesions of the fornix facilitate acquisition on this task, showing that an intact hippocampal system can interfere with learning an amygdala-dependent task. Our recent findings indicate that acetylcholine (ACh) release in the hippocampus increases while rats perform a hippocampus-dependent spontaneous alternation task. To the extent that ACh output in the hippocampus reflects activation of that brain area in learning and memory, the results obtained with fornix lesions suggest that ACh release in the hippocampus might be negatively correlated with learning on a CPP task. Using in vivo microdialysis, release of ACh was measured in the hippocampus while rats learned and were tested on an amygdala-dependent CPP task and a hippocampus-dependent spontaneous alternation task. Release of ACh in the hippocampus increased when rats were tested on either task. The magnitude of the increase in release of hippocampal ACh was negatively correlated with good performance on the amygdala-dependent CPP task. These findings suggest that ACh release may reflect activation and participation of the hippocampus in learning and memory, but in a manner that can be detrimental to performance on a task dependent on another brain area. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
ISSN: | 0270-6474 1529-2401 1529-2401 |
DOI: | 10.1523/jneurosci.22-03-01171.2002 |