By-Products of the Black Soybean Sauce Manufacturing Process as Potential Antioxidant and Anti-Inflammatory Materials for Use as Functional Foods

To assess the potential of by-products of the black bean fermented soybean sauce manufacturing process as new functional food materials, we prepared black bean steamed liquid lyophilized product (BBSLP) and analysed its antioxidant effects in vitro. RAW264.7 macrophages were cultured and treated wit...

Full description

Saved in:
Bibliographic Details
Published inPlants (Basel) Vol. 10; no. 12; p. 2579
Main Authors Hsieh, Shu-Ling, Shih, Yi-Wen, Chiu, Ying-Ming, Tseng, Shao-Feng, Li, Chien-Chun, Wu, Chih-Chung
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 25.11.2021
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:To assess the potential of by-products of the black bean fermented soybean sauce manufacturing process as new functional food materials, we prepared black bean steamed liquid lyophilized product (BBSLP) and analysed its antioxidant effects in vitro. RAW264.7 macrophages were cultured and treated with BBSLP for 24 h, and 1 μg/mL lipopolysaccharide (LPS) was then used for another 24 h to induce inflammation. The cellular antioxidant capacity and inflammatory response were then analysed. Activation of nuclear factor kappa B (NF-κB) signaling in RAW264.7 macrophages was also analysed. Results showed BBSLP had 2,2-diphenyl-1-(2,4,6-trinitrophenyl)hydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium (ABTS ) radical-scavenging abilities and reducing power in vitro. The levels of both reactive oxygen species (ROS) and thiobarbituric acid reactive substances (TBARS) were reduced after RAW264.7 macrophages were treated with BBSLP after LPS induction. After RAW264.7 macrophage treatment with BBSLP and induction by LPS, the levels of inflammatory molecules, including nitric oxide (NO), prostaglandin E (PGE ), IL-1α, IL-6 and TNF-α, decreased. NF-κB signaling activity was inhibited by reductions in IκB phosphorylation and NF-κB DNA-binding activity after RAW264.7 macrophages were treated with BBSLP after LPS induction. In conclusion, BBSLP has antioxidant and anti-inflammatory capabilities and can be a supplement material for functional food.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2223-7747
2223-7747
DOI:10.3390/plants10122579