A Combined Drug Treatment That Reduces Mitochondrial Iron and Reactive Oxygen Levels Recovers Insulin Secretion in NAF-1-Deficient Pancreatic Cells

Decreased insulin secretion, associated with pancreatic β-cell failure, plays a critical role in many human diseases including diabetes, obesity, and cancer. While numerous studies linked β-cell failure with enhanced levels of reactive oxygen species (ROS), the development of diabetes associated wit...

Full description

Saved in:
Bibliographic Details
Published inAntioxidants Vol. 10; no. 8; p. 1160
Main Authors Karmi, Ola, Sohn, Yang-Sung, Marjault, Henri-Baptiste, Israeli, Tal, Leibowitz, Gil, Ioannidis, Konstantinos, Nahmias, Yaakov, Mittler, Ron, Cabantchik, Ioav Z, Nechushtai, Rachel
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 21.07.2021
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Decreased insulin secretion, associated with pancreatic β-cell failure, plays a critical role in many human diseases including diabetes, obesity, and cancer. While numerous studies linked β-cell failure with enhanced levels of reactive oxygen species (ROS), the development of diabetes associated with hereditary conditions that result in iron overload, e.g., hemochromatosis, Friedreich's ataxia, and Wolfram syndrome type 2 (WFS-T2; a mutation in , encoding the [2Fe-2S] protein NAF-1), underscores an additional link between iron metabolism and β-cell failure. Here, using NAF-1-repressed INS-1E pancreatic cells, we observed that NAF-1 repression inhibited insulin secretion, as well as impaired mitochondrial and ER structure and function. Importantly, we found that a combined treatment with the cell permeant iron chelator deferiprone and the glutathione precursor N-acetyl cysteine promoted the structural repair of mitochondria and ER, decreased mitochondrial labile iron and ROS levels, and restored glucose-stimulated insulin secretion. Additionally, treatment with the ferroptosis inhibitor ferrostatin-1 decreased cellular ROS formation and improved cellular growth of NAF-1 repressed pancreatic cells. Our findings reveal that suppressed expression of NAF-1 is associated with the development of ferroptosis-like features in pancreatic cells, and that reducing the levels of mitochondrial iron and ROS levels could be used as a therapeutic avenue for WFS-T2 patients.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2076-3921
2076-3921
DOI:10.3390/antiox10081160