Patterning of brain precursors in ascidian embryos

In terms of their embryonic origins, the anterior and posterior parts of the ascidian central nervous system (CNS) are associated with distinct germ layers. The anterior part of the sensory vesicle, or brain, originates from ectoderm lineages following a neuro-epidermal binary fate decision. In cont...

Full description

Saved in:
Bibliographic Details
Published inDevelopment (Cambridge) Vol. 144; no. 2; pp. 258 - 264
Main Authors Esposito, Rosaria, Yasuo, Hitoyoshi, Sirour, Cathy, Palladino, Antonio, Spagnuolo, Antonietta, Hudson, Clare
Format Journal Article
LanguageEnglish
Published England The Company of Biologists Ltd 15.01.2017
Company of Biologists
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In terms of their embryonic origins, the anterior and posterior parts of the ascidian central nervous system (CNS) are associated with distinct germ layers. The anterior part of the sensory vesicle, or brain, originates from ectoderm lineages following a neuro-epidermal binary fate decision. In contrast, a large part of the remaining posterior CNS is generated following neuro-mesodermal binary fate decisions. Here, we address the mechanisms that pattern the anterior brain precursors along the medial-lateral axis (future ventral-dorsal) at neural plate stages. Our functional studies show that Nodal signals are required for induction of lateral genes, including Delta-like, Snail, Msxb and Trp Delta-like/Notch signalling induces intermediate (Gsx) over medial (Meis) gene expression in intermediate cells, whereas the combinatorial action of Snail and Msxb prevents the expression of Gsx in lateral cells. We conclude that despite the distinct embryonic lineage origins within the larval CNS, the mechanisms that pattern neural precursors are remarkably similar.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0950-1991
1477-9129
DOI:10.1242/dev.142307