Transmembrane Peptides Stabilize Inverted Cubic Phases in a Biphasic Length-Dependent Manner: Implications for Protein-Induced Membrane Fusion

WALP peptides consist of repeating alanine-leucine sequences of different lengths, flanked with tryptophan “anchors” at each end. They form membrane-spanning α-helices in lipid membranes, and mimic protein transmembrane domains. WALP peptides of increasing length, from 19 to 31 amino acids, were inc...

Full description

Saved in:
Bibliographic Details
Published inBiophysical journal Vol. 90; no. 1; pp. 200 - 211
Main Authors Siegel, D.P., Cherezov, V., Greathouse, D.V., Koeppe, R.E., Killian, J. Antoinette, Caffrey, M.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.01.2006
Biophysical Society
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:WALP peptides consist of repeating alanine-leucine sequences of different lengths, flanked with tryptophan “anchors” at each end. They form membrane-spanning α-helices in lipid membranes, and mimic protein transmembrane domains. WALP peptides of increasing length, from 19 to 31 amino acids, were incorporated into N-monomethylated dioleoylphosphatidylethanolamine (DOPE-Me) at concentrations up to 0.5 mol% peptide. When pure DOPE-Me is heated slowly, the lamellar liquid crystalline (L α ) phase first forms an inverted cubic (Q II) phase, and the inverted hexagonal (H II) phase at higher temperatures. Using time-resolved x-ray diffraction and slow temperature scans (1.5°C/h), WALP peptides were shown to decrease the temperatures of Q II and H II phase formation ( T Q and T H, respectively) as a function of peptide concentration. The shortest and longest peptides reduced T Q the most, whereas intermediate lengths had weaker effects. These findings are relevant to membrane fusion because the first step in the L α /Q II phase transition is believed to be the formation of fusion pores between pure lipid membranes. These results imply that physiologically relevant concentrations of these peptides could increase the susceptibility of biomembrane lipids to fusion through an effect on lipid phase behavior, and may explain one role of the membrane-spanning domains in the proteins that mediate membrane fusion.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Address reprint requests to David P. Siegel, Givaudan Inc., 1199 Edison Drive, Cincinnati, OH 45215. Tel.: 513-948-4840; E-mail: david.siegel@givaudan.com.
ISSN:0006-3495
1542-0086
DOI:10.1529/biophysj.105.070466