Fate and toxicity of 2-(fluoromethoxy)-1,1,3,3,3-pentafluoro-1-propene (compound A)-derived mercapturates in male, fischer 344 rats

2-(Fluoromethoxy)-1,1,3,3,3-pentafluoro-1-propene (compound A) is formed in the anesthesia circuit by the degradation of sevoflurane. Compound A is nephrotoxic in rats and undergoes metabolism by the mercapturic acid pathway in rats and humans to yield the mercapturates S-[2-(fluoromethoxy)-1,1,3,3,...

Full description

Saved in:
Bibliographic Details
Published inAnesthesiology (Philadelphia) Vol. 89; no. 5; pp. 1174 - 1183
Main Authors UTTAMSINGH, V, IYER, R. A, BAGGS, R. B, ANDERS, M. W
Format Journal Article
LanguageEnglish
Published Hagerstown, MD Lippincott 01.11.1998
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:2-(Fluoromethoxy)-1,1,3,3,3-pentafluoro-1-propene (compound A) is formed in the anesthesia circuit by the degradation of sevoflurane. Compound A is nephrotoxic in rats and undergoes metabolism by the mercapturic acid pathway in rats and humans to yield the mercapturates S-[2-(fluoromethoxy)-1,1,3,3,3-pentafluoropropyl]-N-acetyl-L -cysteine (compound 3) and S-[2(fluoromethoxy)-1,3,3,3-tetrafluoro-1-propenyl]-N-acetyl-L-cys teine (compound 5). These experiments were designed to examine the fate and nephrotoxicity of compound A-derived mercapturates in rats. The deacetylation of compounds 3 and 5 by human and rat kidney cytosol and with purified acylases I and III was measured, and their nephrotoxicity was studied in male Fischer 344 rats. The metabolism of the deuterated analogs of compounds 3 and 5, [acetyl-2H3]S-[2-(fluoromethoxy)-1,1,3,3,3-pentafluoropropyl ]-N-acetyl-L-cysteine (compound 3-d3) and [acetyl-2H3]S-[2-(fluoromethoxy)-1,3,3,3-tetrafluoro-1-propenyl]-N -acetyl-L-cysteine (compound 5-d3), respectively, was measured. Compound 5, but not compound 3, was hydrolyzed by human and rat kidney cytosols and by acylases I and III. 19F nuclear magnetic resonance spectroscopic analysis showed no urinary metabolites of compound 3, but unchanged compound 5 and its metabolites 2-(fluoromethoxy)-3,3,3-trifluoropropanoic acid and 2-[1-(fluoromethoxy)-2,2,2-trifluoroethyl]-4,5-dihydro-1,3-thiazol e-4-carboxylic acid were detected in urine. Compound 5 (250 microM/kg) produced clinical chemical and morphologic evidence of renal injury in two of three animals studied. Compounds 3 and 5 underwent little metabolism. Compound 5, but not compound 3, was mildly nephrotoxic. These results indicate that compound A-derived mercapturate formation constitutes a detoxication pathway for compound A.
ISSN:0003-3022
1528-1175
DOI:10.1097/00000542-199811000-00018