A Study: Removal of Cu(II), Cd(II), and Pb(II) Ions from Real Industrial Water and Contaminated Water Using Activated Sludge Biomass

This study aims to remove of Cu2+, Cd2+, and Pb2+ ions from solution and to investigate the adsorption isotherms, adsorption kinetics, and ion‐exchange affinities of these metals using waste activated sludge (AS) biomass. The adsorptions of the metals on biomass were optimal at an acidic pH value of...

Full description

Saved in:
Bibliographic Details
Published inClean : soil, air, water Vol. 40; no. 11; pp. 1273 - 1283
Main Authors Kusvuran, Erdal, Yildirim, Deniz, Samil, Ali, Gulnaz, Osman
Format Journal Article
LanguageEnglish
Published Weinheim WILEY-VCH Verlag 01.11.2012
WILEY‐VCH Verlag
Wiley-VCH
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This study aims to remove of Cu2+, Cd2+, and Pb2+ ions from solution and to investigate the adsorption isotherms, adsorption kinetics, and ion‐exchange affinities of these metals using waste activated sludge (AS) biomass. The adsorptions of the metals on biomass were optimal at an acidic pH value of 6.0 based on its monolayer capacities. Maximum monolayer capacities of AS biomass (qmax) were calculated as 0.478, 0.358, and 0.280 mmol g−1 for Cu2+, Cd2+, and Pb2+, respectively, and the adsorption equilibrium time was found as 60 min for each metal. The adsorbed amount of metal rose with increasing of initial metal ion concentration. The equilibrium adsorption capacity of AS for initial 0.25 mmol L−1 metal concentration was determined as 0.200, 0.167, and 0.155 mmol g−1 for Cu2+, Cd2+, and Pb2+ ions, respectively. These relevant values were determined as 0.420, 0.305, and 0.282 mmol g−1 for Cu2+, Cd2+, and Pb2+ ions, respectively, when initial metal concentration was 0.50 mmol L−1. In the multi‐metal sorption system, the adsorption capacity of AS biomass was observed in the order of Cu2+ > Cd2+ > Pb2+. In the presence of 100 mmol L−1 H+ ion, the order of ion‐exchange affinity with H+ was found as Cu2+ > Cd2+ > Pb2+. The adsorption kinetics were also found to be well described by the pseudo‐second‐order and intraparticle diffusion models. Two different rate constants were obtained as ki1 and ki2 and ki1 (first stage) was found to be higher than ki2 (second stage). The results of the FTIR analysis indicated that AS biomass has –OH, –NH2, –COOH, and –PO4 groups which can react with Cu2+, Cd2+, and Pb2+ ions. The dried AS could be a promising and cheap alternative for the treatment of pure and industrial wastewater.
Bibliography:istex:0E847B1CB99C9C73E948076B71A61315BAD50EC0
ark:/67375/WNG-TQX028RH-Q
ArticleID:CLEN201100443
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1863-0650
1863-0669
DOI:10.1002/clen.201100443