Data association for deghosting in Y-shaped passive linear array sonars

This paper deals with data association using three sets of passive linear array sonars (PLAS) geometrically positioned in a Y-shaped configuration, fixed in an underwater environment. The data association problem is directly transformed into a 3D assignment, which is known to be NP hard. For generic...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on aerospace and electronic systems Vol. 40; no. 1; pp. 103 - 113
Main Authors Bonhwa Ku, Jehan Yoon, Han, D.K., Hanseok Ko
Format Journal Article
LanguageEnglish
Published New York IEEE 01.01.2004
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper deals with data association using three sets of passive linear array sonars (PLAS) geometrically positioned in a Y-shaped configuration, fixed in an underwater environment. The data association problem is directly transformed into a 3D assignment, which is known to be NP hard. For generic passive sensors, it can be solved using conventional algorithms, while in PLAS, it becomes a formidable task due to the presence of bearing ambiguity. Thus, the central issue of the problem in PLAS is how to eliminate the bearing ambiguity without increasing tracking error. To solve this problem, the 3D assignment algorithm used the likelihood value of only those observed bearing measurements is modified by incorporating frequency information in consecutive time-aligned scans. The region of possible ghost targets is first established by the geometrical relation of PLAS with respect to target. The ghost targets are then confirmed and eliminated by generating multiple observations in consecutive scans. Representative simulations demonstrate the effectiveness of the proposed approach.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ISSN:0018-9251
1557-9603
DOI:10.1109/TAES.2004.1292146