Correlative 3D x-ray fluorescence and ptychographic tomography of frozen-hydrated green algae

Accurate knowledge of elemental distributions within biological organisms is critical for understanding their cellular roles. The ability to couple this knowledge with overall cellular architecture in three dimensions (3D) deepens our understanding of cellular chemistry. Using a whole, frozen-hydrat...

Full description

Saved in:
Bibliographic Details
Published inScience advances Vol. 4; no. 11; p. eaau4548
Main Authors Deng, Junjing, Lo, Yuan Hung, Gallagher-Jones, Marcus, Chen, Si, Pryor, Jr, Alan, Jin, Qiaoling, Hong, Young Pyo, Nashed, Youssef S G, Vogt, Stefan, Miao, Jianwei, Jacobsen, Chris
Format Journal Article
LanguageEnglish
Published United States AAAS 02.11.2018
American Association for the Advancement of Science
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Accurate knowledge of elemental distributions within biological organisms is critical for understanding their cellular roles. The ability to couple this knowledge with overall cellular architecture in three dimensions (3D) deepens our understanding of cellular chemistry. Using a whole, frozen-hydrated cell as an example, we report the development of 3D correlative microscopy through a combination of simultaneous cryogenic x-ray ptychography and x-ray fluorescence microscopy. By taking advantage of a recently developed tomographic reconstruction algorithm, termed GENeralized Fourier Iterative REconstruction (GENFIRE), we produce high-quality 3D maps of the unlabeled alga's cellular ultrastructure and elemental distributions within the cell. We demonstrate GENFIRE's ability to outperform conventional tomography algorithms and to further improve the reconstruction quality by refining the experimentally intended tomographic angles. As this method continues to advance with brighter coherent light sources and more efficient data handling, we expect correlative 3D x-ray fluorescence and ptychographic tomography to be a powerful tool for probing a wide range of frozen-hydrated biological specimens, ranging from small prokaryotes such as bacteria, algae, and parasites to large eukaryotes such as mammalian cells, with applications that include understanding cellular responses to environmental stimuli and cell-to-cell interactions.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
AC02-06CH11357
National Science Foundation (NSF)
National Institutes of Health (NIH), National Institute of General Medical Sciences
USDOE Office of Science (SC), Basic Energy Sciences (BES)
These authors contributed equally to this work.
ISSN:2375-2548
2375-2548
DOI:10.1126/sciadv.aau4548