The Transcriptional Regulatory Protein, YB-1, Promotes Single-stranded Regions in the DRA Promoter

YB-1 is a member of a newly defined family of DNA- and RNA-binding proteins, the Y box factors. These proteins have been shown to affect gene expression at both the transcriptional and translational levels. Recently, we showed that YB-1 represses interferon- -induced transcription of class II human...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of biological chemistry Vol. 270; no. 8; pp. 3527 - 3533
Main Authors MacDonald, G H, Itoh-Lindstrom, Y, Ting, J P
Format Journal Article
LanguageEnglish
Published United States American Society for Biochemistry and Molecular Biology 24.02.1995
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:YB-1 is a member of a newly defined family of DNA- and RNA-binding proteins, the Y box factors. These proteins have been shown to affect gene expression at both the transcriptional and translational levels. Recently, we showed that YB-1 represses interferon- -induced transcription of class II human major histocompatibility (MHC) genes( 1 ). Studies in this report characterize the DNA binding properties of purified, recombinant YB-1 on the MHC class II DRA promoter. The generation of YB-1-specific antibodies further permitted an analysis of the DNA binding properties of endogenous YB-1. YB-1 specifically binds single-stranded templates of the DRA promoter with greater affinity than double-stranded templates. The single-stranded DNA binding sites of YB-1 were mapped to the X box, whereas the double-stranded binding sites were mapped to the Y box of the DRA promoter, by methylation interference analysis. Most significantly, YB-1 can induce or stabilize single-stranded regions in the X and Y elements of the DRA promoter, as revealed by mung bean nuclease analysis. In concert with the findings that YB-1 represses DRA transcription, this study of YB-1 binding properties suggests a model of repression in which YB-1 binding results in single-stranded regions within the promoter, thus preventing loading and/or function of other DRA-specific transactivating factors.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.270.8.3527