Phosphorus transfer in surface runoff from intensive pasture systems at various scales: a review

Phosphorus transfer in runoff from intensive pasture systems has been extensively researched at a range of scales. However, integration of data from the range of scales has been limited. This paper presents a conceptual model of P transfer that incorporates landscape effects and reviews the research...

Full description

Saved in:
Bibliographic Details
Published inJournal of environmental quality Vol. 33; no. 6; pp. 1973 - 1988
Main Authors Dougherty, W.J, Fleming, N.K, Cox, J.W, Chittleborough, D.J
Format Journal Article
LanguageEnglish
Published Madison, WI Crop Science Society of America 01.11.2004
American Society of Agronomy
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Phosphorus transfer in runoff from intensive pasture systems has been extensively researched at a range of scales. However, integration of data from the range of scales has been limited. This paper presents a conceptual model of P transfer that incorporates landscape effects and reviews the research relating to P transfer at a range of scales in light of this model. The contribution of inorganic P sources to P transfer is relatively well understood, but the contribution of organic P to P transfer is still relatively poorly defined. Phosphorus transfer has been studied at laboratory, profile, plot, field, and watershed scales. The majority of research investigating the processes of P transfer (as distinct from merely quantifying P transfer) has been undertaken at the plot scale. However, there is a growing need to integrate data gathered at a range of scales so that more effective strategies to reduce P transfer can be identified. This has been hindered by the lack of a clear conceptual framework to describe differences in the processes of P transfer at the various scales. The interaction of hydrological (transport) factors with P source factors, and their relationship to scale, require further examination. Runoff-generating areas are highly variable, both temporally and spatially. Improvement in the understanding and identification of these areas will contribute to increased effectiveness of strategies aimed at reducing P transfers in runoff. A thorough consideration of scale effects using the conceptual model of P transfer outlined in this paper will facilitate the development of improved strategies for reducing P losses in runoff.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0047-2425
1537-2537
DOI:10.2134/jeq2004.1973