Some of the properties of wood–plastic composites

In this study some of the important properties of experimentally manufactured wood–plastic composites (WPC) were determined. Specimen having 60% and 80% particle and fiber of radiata pine (Pinus radiata ) were mixed with polypropylene (plastic) and four different additives, namely Structor TR 016 wh...

Full description

Saved in:
Bibliographic Details
Published inBuilding and environment Vol. 42; no. 7; pp. 2637 - 2644
Main Authors Wechsler, Andrea, Hiziroglu, Salim
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.07.2007
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this study some of the important properties of experimentally manufactured wood–plastic composites (WPC) were determined. Specimen having 60% and 80% particle and fiber of radiata pine (Pinus radiata ) were mixed with polypropylene (plastic) and four different additives, namely Structor TR 016 which is coupling agent, CIBA anti-microbial agent (IRGAGUARD F3510) as fungicide, CIBA UV filter coating (TINUVIN 123S), CIBA blue pigment (Irgalite), and their combinations. Based on the initial finding of this work static bending properties of the samples enhanced as above chemicals were added into both particle and fiber-based specimens. Thickness swelling of the samples were also improved with having additives in the panels. Micrographs taken on scanning electron microscope (SEM) revealed that coupling agent and pigment resulted in more homogeneous mixture of wood and plastic together. Two surface roughness parameters average roughness (Ra) and maximum roughness (Rmax) used to evaluate surface characteristics of the samples showed that particle based samples had rougher surface characteristics than those of fiber based ones. No significant influence of chemicals added in the samples was found on surface roughness values of the samples manufactured from particle and fiber of radiata pine.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ISSN:0360-1323
1873-684X
DOI:10.1016/j.buildenv.2006.06.018