An Optimised Step-by-Step Protocol for Measuring Relative Telomere Length

Telomeres represent the nucleotide repeat sequences at the ends of chromosomes and are essential for chromosome stability. They can shorten at each round of DNA replication mainly because of incomplete DNA synthesis of the lagging strand. Reduced relative telomere length is associated with aging and...

Full description

Saved in:
Bibliographic Details
Published inMethods and protocols Vol. 3; no. 2; p. 27
Main Authors Joglekar, Mugdha V., Satoor, Sarang N., Wong, Wilson K.M., Cheng, Feifei, Ma, Ronald C.W., Hardikar, Anandwardhan A.
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 03.04.2020
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Telomeres represent the nucleotide repeat sequences at the ends of chromosomes and are essential for chromosome stability. They can shorten at each round of DNA replication mainly because of incomplete DNA synthesis of the lagging strand. Reduced relative telomere length is associated with aging and a range of disease states. Different methods such as terminal restriction fragment analysis, real-time quantitative PCR (qPCR) and fluorescence in situ hybridization are available to measure telomere length; however, the qPCR-based method is commonly used for large population-based studies. There are multiple variations across qPCR-based methods, including the choice of the single-copy gene, primer sequences, reagents, and data analysis methods in the different reported studies so far. Here, we provide a detailed step-by-step protocol that we have optimized and successfully tested in the hands of other users. This protocol will help researchers interested in measuring relative telomere lengths in cells or across larger clinical cohort/study samples to determine associations of telomere length with health and disease.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2409-9279
2409-9279
DOI:10.3390/mps3020027