Schwinger-Keldysh formalism. Part I: BRST symmetries and superspace

A bstract We review the Schwinger-Keldysh, or in-in, formalism for studying quantum dynamics of systems out-of-equilibrium. The main motivation is to rephrase well known facts in the subject in a mathematically elegant setting, by exhibiting a set of BRST symmetries inherent in the construction. We...

Full description

Saved in:
Bibliographic Details
Published inThe journal of high energy physics Vol. 2017; no. 6; pp. 1 - 91
Main Authors Haehl, Felix M., Loganayagam, R., Rangamani, Mukund
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.06.2017
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A bstract We review the Schwinger-Keldysh, or in-in, formalism for studying quantum dynamics of systems out-of-equilibrium. The main motivation is to rephrase well known facts in the subject in a mathematically elegant setting, by exhibiting a set of BRST symmetries inherent in the construction. We show how these fundamental symmetries can be made manifest by working in a superspace formalism. We argue that this rephrasing is extremely efficacious in understanding low energy dynamics following the usual renormalization group approach, for the BRST symmetries are robust under integrating out degrees of freedom. In addition we discuss potential generalizations of the formalism that allow us to compute out-of-time-order correlation functions that have been the focus of recent attention in the context of chaos and scrambling. We also outline a set of problems ranging from stochastic dynamics, hydrodynamics, dynamics of entanglement in QFTs, and the physics of black holes and cosmology, where we believe this framework could play a crucial role in demystifying various confusions. Our companion paper [1] describes in greater detail the mathematical framework embodying the topological symmetries we uncover here.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1029-8479
1029-8479
DOI:10.1007/JHEP06(2017)069