Novel protein-loaded chondroitin sulfate–chitosan nanoparticles: Preparation and characterization
In this study, the potential of chondroitin sulfate (ChS)–chitosan (CS) nanoparticles (NPs) for the delivery of proteins was investigated. ChS–CS NPs were prepared by ionic cross-linking of CS solution with ChS. The aggregation line, particle size and zeta potential were investigated as a function o...
Saved in:
Published in | Acta biomaterialia Vol. 7; no. 10; pp. 3804 - 3812 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.10.2011
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In this study, the potential of chondroitin sulfate (ChS)–chitosan (CS) nanoparticles (NPs) for the delivery of proteins was investigated. ChS–CS NPs were prepared by ionic cross-linking of CS solution with ChS. The aggregation line, particle size and zeta potential were investigated as a function of the pH, weight ratio and concentration. The water content and formation yield of the NPs were measured by gravimetry. Results indicated that ChS–CS NPs showed a higher degree of ionic cross-linking and formation yield than sodium tripolyphosphate–CS NPs. Fluorescein isothiocyanate conjugate bovine serum albumin (FITC–BSA), a model protein drug, was incorporated into the ChS–CS NPs. The encapsulation efficiency was obviously increased with the increase in initial FITC–BSA concentration and was as high as 90%. In vitro release studies of ChS–CS NPs showed a small burst effect following a continued and controlled release. Cytotoxicity tests with Caco-2 cells showed no toxic effects of ChS–CS NPs. The ex vivo cellular uptake studies using Caco-2 and HEK-293 cells indicated that NPs were found to be endocytosed into the cells. In conclusion, ChS–CS NPs are a potential new delivery system for the transport of hydrophilic compounds such as proteins. |
---|---|
Bibliography: | http://dx.doi.org/10.1016/j.actbio.2011.06.026 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1742-7061 1878-7568 |
DOI: | 10.1016/j.actbio.2011.06.026 |