Improved EDGE2D-EIRENE simulations of JET ITER-like wall L-mode discharges utilising poloidal VUV/visible spectral emission profiles

A discrepancy in the divertor radiated powers between EDGE2D-EIRENE simulations, both with and without drifts, and JET-ILW experiments employing a set of NBI-heated L-mode discharges with step-wise density variation is investigated. Results from a VUV/visible poloidally scanning spectrometer are use...

Full description

Saved in:
Bibliographic Details
Published inJournal of nuclear materials Vol. 463; pp. 582 - 585
Main Authors Lawson, K.D., Groth, M., Belo, P., Brezinsek, S., Corrigan, G., Czarnecka, A., Delabie, E., Drewelow, P., Harting, D., Książek, I., Maggi, C.F., Marchetto, C., Meigs, A.G., Menmuir, S., Stamp, M.F., Wiesen, S.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 2015
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A discrepancy in the divertor radiated powers between EDGE2D-EIRENE simulations, both with and without drifts, and JET-ILW experiments employing a set of NBI-heated L-mode discharges with step-wise density variation is investigated. Results from a VUV/visible poloidally scanning spectrometer are used together with bolometric measurements to determine the radiated power and its composition. The analysis shows the importance of D line radiation in contributing to the divertor radiated power, while contributions from D radiative recombination are smaller than expected. Simulations with W divertor plates underestimate the Be content in the divertor, since no allowance is made for Be previously deposited on the plates being re-eroded. An improved version of EDGE2D-EIRENE is used to test the importance of the deposited layer in which the sputtering yield from supposed pure Be divertor plates is reduced to match the spectroscopic signals, while keeping the sputtering yield for the Be main chamber walls unchanged.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0022-3115
1873-4820
1873-4820
DOI:10.1016/j.jnucmat.2014.11.111